		NIPS同刀丁	講座(第5期)	平成25年度講義日程表		2012/10/19
		日時 2013年 5月15日(水)	講師 伊藤紳三郎	講義題目 序論高分子とは?	講義内容 高分子と講座のアウトラインの紹介	ラボツアー
1	Α	13:30-14:00 14:00-15:30	山子 茂	ラジカル重合特徴と利用法	1. ラジカルの構造と反応性 2. ラジカル重合の素反応 3. リビングラジカル重合の基礎 4. リビングラジカル重合の方法 5. 高分子材料の創製	
	В	16:00-17:30	吉崎 武尚	稀薄溶液中の高分子の大きさと 形光散乱法を用いた高分子 キャラクタリゼーション	1. 孤立高分子鎖の大きさと形 2. 静的光散乱データの解析例 3. 動的光散乱データの解析例 4. 広がりの分子量依存性 5. 機能性高分子の特性解析にむけて	
2	Α	6月19日(水) 13:30-15:00	澤本 光男	イオン重合ラジカル重合・配 位重合では合成できないポリ マーを目指して	 イオン重合の基礎 イオン重合の特徴 アニオン重合の基礎 カチオン重合の基礎 イオン重合による高分子精密合成 	
	В	15:30-17:00	梶 弘典	高分子の化学構造溶液NMR の利用から固体NMRによる解析 へ	1. 一次構造とNMR測定 2. 立体規則性 3. 共重合体 4. 非線状高分子など 5. 固体構造	
3	Α	7月10日(水) 13:30-15:00	中條 善樹	次世代高分子材料――高分子ハ イブリッド材料の可能性	 重縮合の基礎 ゾル・ゲル反応 がご状シルセスキオキサン 有機無機ナノハイブリッド材料 金属ナノ粒子と高分子 	- 中條研
	В	15:30-17:00	古賀 毅	高分子の溶解と相分離――熱力学とシミュレーションによる理解	 高分子溶液の統計熱力学 高分子溶液の相分離 高分子の会合 高分子水溶液 高分子水溶液 高分子の計算機シミュレーション 	ा । ।
4	Α	8月21日(水) 13:30-15:00	三田 文雄	遷移金属触媒重合高選択的 連鎖重合・逐次重合の開発	オレフィン重合 オレフィン重合 オタセン・重合 オタセン・重合 オタセン・重合 港移金属触媒重合の応用展開 透移金属触媒重合の今後の展望	
	В	15:30-17:00	金谷 利治	高分子固体高分子結晶とガラスの構造と物性	1. 高分子固体物性 2. 非晶構造と対うス転移 3. 結晶構造と結晶化過程 4. 高次構造 5. 配向構造	
5	Α	9月18日(水) 13:30-15:00	竹中 幹人	高分子ブレンド・ブロック共重合 体高分子多成分系の構造と 物性	高分子多成分系の熱力学 高分子ブレンドの相分離 ブロック共重合体の相分離 相分離構造と物性 ナノテク材料への応用	
	В	15:30-17:00	辻井 敬亘	リビング重合による材料設計 反応性の制御と利用	各種重合方法とリビング重合 官能基の導入と化学変換 架橋 グラフト 林野計への応用 最新の重合系から 最新の重合系から	
6	Α	10月16日(水) 13:30-15:00	瀧川 敏算	力学物性1固体	1. 1本の鎖の性質 2. 物理量の定義 3. 種々の変形様式 4. 高分子網目の力学物性 5. 有限変形理論	- 瀧川研
	В	15:30-17:00	秋吉 一成	高分子ゲルの科学次世代機能性ソフトマテリアル創製に向けて	1. ゲルの構造と物性 2. ゲルの機能 3. 生体系のゲル 4. 刺激応答性ゲルの設計と機能 5. ゲルのパイオ応用	
7	Α	11月20日(水) 13:30-15:00	渡辺 宏	カ学物性2(高分子液体)弾 む液体	1. 高分子の応力 2. 線形粘弾性の枠組み 3. 温度の効果 4. 絡み合い鎖の線形緩和 5. 絡み合い鎖の非線形緩和	
	В	15:30-17:00	岩田 博夫	医用高分子生体適合性につ いて	 医工学を取り巻く環境 2、2、3の医療用デバイス 細胞接着 タンパク吸着 細胞表面修飾 	
8	Α	12月18日(水) 13:30-15:00	木村 俊作	生体関連高分子(タンパク質、核酸)生理活性と機能材料	1. タンパク質の構造 2. タンパク質の機能 3. 核酸の構造 4. 核酸の機能 5. 材料としてのタンパク質、核酸	
	В	15:30-17:00	西尾 嘉之	天然高分子――機能化素材とし て活かす	1. 主要多糖の分類と特徴 2. セルロースの保造と特性 3. セルロースの反応と改質 4. ポリグルカンおよびリグニンのモダン活用 5. バイオマスと環境・資源	
9	Α	2014年 1月15日(水) 13:30-15:00	赤木 和夫	高分子の導電性電気を通し 光りもするポリマー	1. 高分子鎖上の π電子の振舞い 2. π電子共役とバンド構造 3. 化学ドーピングと導電性発現 4. 配向と電気的異方性 5. 導電性と発光性との融合	- 赤木研
	В	15:30-17:00	大嶋 正裕	高分子成形加工成形機内での樹脂の流れを見よう・考えよう	1. ニュートン流体 2. 運動量パランス・カのパランスから流れの方程式 3. 押出流れと牽引流れ 4. パレル内での流れ 5. キャビティ内でのさまざまな流れ.	
10	В	2月19日(水) 13:30-15:00	伊藤紳三郎	高分子の光機能光で働く高 分子・光を操る高分子	1. 光の基本的特性 2. 電子励起と励起状態の振舞い 3. 光化学反応による高分子機能 4. 高分子の光・電子機能 5. オプティクス分野で働く高分子	
		15:30-17:00	田畑 泰彦	生体機能性高分子からだを 治すポリマー(生物医学研究から 先端医療までを支える高分子技 術)	1. くすり作用を高める高分子(ドラッグデリバリーシステム、DDS) 2. 病気の治療を助ける高分子(外科。内科医療材料) 3. からだの自然治療力を引き出す高分子技術(再生医療) 4. 細胞活性を高める高分子技術(細胞移植治療) 5. 細胞の生物機能を高める遺伝子(生物医学研究)	
		17:00-19:00	修了式			